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SUMMARY 

Selected finite element Eulerian-Lagrangian methods for the solution of the transport equation are compared 
systematically in the relatively simple context of 1 D, constant coefficient, conservative problems. A combination 
of formal analysis and numerical experimentation is used to characterize the stability and accuracy that results 
from alternative treatments of the concentrations at the feet of the characteristic lines. Within the methods 
analyzed, those that approach such treatment with the perspective of ‘integration’ rather than ‘interpolation’ tend to 
have superior accuracy. Exact integration leads to unconditional stability and excellent accuracy. Quadrature 
integration leads only to conditional stability, but newly derived criteria show that stability restrictions are 
relatively mild and should not preclude the usehlness of quadrature integration methods in a range of practical 
applications. While conclusions cannot be extended directly to multiple dimensions and complex flows and 
geometries, results should provide useful insight to the development and behaviour of specific Eulerian- 
Lagrangian transport models. 
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1. INTRODUCTION 

Eulerian-Lagrangian methods (ELMs) have evolved much over the last three decades to become one 
of the most attractive techniques for the solution of advection-dominated transport. The basic concept 
of ELMs is simple: the transport equation is solved in Lagrangian form ‘along’ characteristic lines, 
effectively decoupling the advection and diffusion terms but retaining the convenience of fixed 
computational grids. However, there are many different ways to implement this concept and several 
ELMs have been proposed and applied over the years.14’ 

As frequently happens in fast-evolving areas, much more attention has been paid to the development 
of new ELMs than to the systematic comparison of existing ones. Consequences include the existence 
of disparate terminologies and of a large number of similar but distinct techniques, whose individual 
and relative merits are too often misunderstood. This paper, which updates earlier systematic 
comparisons,‘’2 focuses on finite-element-based ELMs (FE-ELMS), a popular and fast-evolving class 
of methods. 

FE-ELMS have been applied in many displinary areas in one, two and three  dimension^.^-'^ They 
are generally recognized as rather attractive when advection is the dominant transport process, but 
questions remain about their robustness (e.g. there is no inherent mass preservation) and about which 
implementations are most effective. For instance, FE-ELMS that use the concept of integration (rather 
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than interpolation) to handle the initial conditions of the diffusion step have rather promising accuracy 
when they are stable, but lead to instability under conditions that have not been fully understood. In 
order to better understand this specific problem, we step back into the relatively simplistic context of 
1 D, constant coefficient, non-reactive transport and use formal analysis and numerical experimentation 
to compare a number of 'interpolation' and 'integration' FE-ELMS and to develop criteria for their 
stability and accuracy. 

The paper is divided into five main sections. Section 2 briefly reviews the history of the evolution of 
ELMS and introduces the methods selected for analysis. Out of necessity, some new nomenclature is 
introduced. While this nomenclature may be transitory, it creates a guiding taxonomy that helps the 
reader throughout the paper and addresses a growing need for systematics in numerical analysis. 
Section 3 provides the rationale for our choice of specific methods and describes their formulation. 
Additional nomenclature is introduced, completing the taxonomy adopted in the paper. Sections 4 and 
5 examine, respectively, the stability and the accuracy of the selected methods, based on formal 
analysis of truncation and propagation errors. Error formulae are compiled in tables and errors are 
mapped in ways that foster the analysis of individual methods. Several numerical tests are included to 
provide a complementary examination of the properties of the methods. Section 6 provides an 
overview of the results and examines implications for future ELM research and for the ongoing 
development and use of a new generation of multidimensional Eulerian-Lagrangian models for 
environmental applications in surface waters. 

2. BACKGROUND 

Eulerian-Lagrangian concepts were introduced in the 1950s and 1960s through the contributions of 
several researchers."?l2 In an attempt to avoid the wiggles that plague centred finite difference 
solutions of the advection-dominated transport equation, a Lagrangian operator was proposed, l2 

D c - d c  dc $c 
Dt at dx ax2 
_ _ _  - + u - = D - - ,  

using the discrete algorithm 

where c is the concentration, u is the velocity and D is the difision coefficient. The location x' of the 
foot of each backward characteristic line is obtained by integration (trivial for uniform velocities) as 

t n  

X( = xj + It"+, udz = xj - uAt 

and the associated concentrations ct are obtained by interpolation or extrapolation as 

q-q-1 
(x' - X j ) .  

Ax 
cc = c; + 

(3) 

(4) 

This method effectively decouples advection from diffusion. The decoupling is physically based in 
the sense that it results naturally from the introduction of backward characteristic lines that follow the 
flow. Three distinct steps are involved in the overall solution: 

(i) determination of the location of the feet of the characteristic lines 
(ii) determination of the concentrations at the feet of the characteristic lines 

(iii) solution of the Lagrangian form of the diffusion equation, using concentrations at the feet of 
the characteristic lines as initial conditions. 
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Both the decoupling strategy and the three generic solution steps are identifying properties of 
Eulerian-Lagrangian methods. However, this pioneering method had a major limitation. Indeed, the 
concentration at the foot of the characteristic line passing through node j at time tn+l is determined 
from the concentrations at nodes j and j - 1; hence for Courant numbers larger than unity this 
determination involves an extrapolation and the algorithm becomes unstable. Furthermore, insertion of 
equation (4) into equation (2) leads to 

which shows that the advection term is effectively approximated by a conventional upwind scheme: 
hence the proposed method can be easily interpreted as essentially a Eulerian upwind method. 

It took over a decade for the pioneering concept embodied in the work of Leith and others to lead to 
the truly distinctive group of methods now known as ELMs. Daubed3 may have been the first to 
recognize that Courant number restrictions could be avoided by interpolating between the nodes that 
bound the foot of each characteristic line rather than by extrapolating from the vicinity of the head of 
the characteristic line. In its conceptual simplicity this recognition may qualify as the single most 
important development in ELM history. 

Daubert also recognized that interpolating linearly to find concentrations at the feet of the 
characteristic lines is a major source of errors and suggested the use of quadratic interpolation. 
Following these early steps, the optimization of the strategy for interpolation at the feet of the 
characteristic lines became a focus for ELM research during the 1980s. A large number of 
interpolators were developed, none of which can be recognized as ‘optimal’ as shown by two 
systematic reviews. ‘9’ 

In conjunction with the search for optimal interpolators, the notion of using ELMs in a finite 
element (FE) context increased. While many F E - E L M S ~ , ’ ~ ’ ~  differ ‘mechanically’ but not in any 
fundamental conceptual way from the corresponding finite difference ELMs,  ome el^-'^ have taken 
advantage of the fact that, in a finite element context, the problem of ‘interpolation’ at the feet of the 
characteristic lines can effectively be expressed as an ‘integration’ problem. 

To illustrate this point, we consider the evaluation of the contribution of a generic element k to the 
weak form of the weighted residual statement 

” dx + boundary terms, 
Dc 

where 4,,, are the weighting functions. 
The evaluation of the integrals does not pose any problem at time n + 1, where the derivatives of the 

elemental shape functions are continuous. However, integrals at time n (Figures l(a)-l(c)) involve 
shape functions from more than one element; hence concentration derivatives are discontinuous over 
the region of integration. The form in which these discontinuities at time n are addressed provides an 
important distinguishing criterion among FE-ELMS. 

‘Interpolation FE-ELMS’ 2,3 simply ‘ignore’ the discontinuity of Vc. The concentrations and 
concentration derivatives are evaluated at the feet of the characteristic lines and assigned to a 
polynomial interpolation function. This interpolation function provides the basis for the integration 
(Figure l(a)), which may be analytical or numerical. Comparison of alternative interpolation 
functions”’ shows that unsatisfactory compromises between cosdfeasibility and accuracy become 
necessary and limit the implementation of the most accurate interpolation ELMs in multiple 
dimensions. 

‘Quadrature FE-ELMS’ I 7 , l 8  explicitly recognizes that the operation that ultimately has to be 
performed is an integration and take a conceptually distinct approach: rather than tracking nodes, these 
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Linear approximation to the concentration at time n - Concentration at time n 

0 Nodes - Characteristic lines 

time n time n 

Polynomial approximation to the concentration at time n - Concentration at time n 

piecewise approximation to the concentration at time n 

- Concentration at time n 

Nodes 0 Nodes 

+ Backward characteristic lines 
-b Forward characteristic lines 

-+ characteristic l i e s  

Interpolated concentration at the feet of the characteristic 
lines of the quadrature points 

Figure 1. Approach to the evaluation of integrals at the feet of  characteristic lines: (a) interpolation ELM; (b) quadrature ELM; 
(c) piecewise ELM 

methods track quadrature points backwards from n + 1 (Figure l(b)), which are then used for 
integration at n. Integration is now necessarily numerical and is typically based on Gauss or Lobatto 
quadrature. Quadrature ELMs are generally less diffusive than interpolation ELMs but are only 
conditionally stable, as first shown by Morton et u Z . * ~  and more systematically investigated in later 
sections. A very attractive property of quadrature FE-ELMS is their straightforward implementation in 
multiple dimensions. 

‘Piecewise integration FE-ELMS’ also recognize the key role of integraton. These methods track 
nodes andor other ‘notable points’ both from n + 1 to n and from n to n + 1; the domain of 
integration is effectively divided into subdomains within which integrals can be evaluated exudy, 
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either numerically or analytically. Notable points tracked from n to n + 1 may (Figure l(c)) or may not 
correspond to discontinuities in first derivatives of concentration. The approach was introduced by Yeh 
et al. l9 borrowing some concepts from N e ~ m a n ; ~ ~  a simpler implementation is proposed in this paper. 

The above three classes cover most FE-ELMS currently available. A fourth and important class, 
however, is constituted by the 'Eulerian-Lagrangian localized adjoint methods' (ELLAMs). The term 
ELLAM has evolved from the research of Russell, Celia, Herrera and c o - w ~ r k e r s , ~ ~ ~ ~ ~ ~ ~ ~ ~  although 
methods with similar characteristics were introduced Loosely speaking, ELLAMs are FE- 
ELMs with weighting functions defined in the space-time domain, which are formally chosen to 
represent or approximate a solution of the homogeneous adjoint equation. 

ELLAMs provide a formal approach to the treatment of boundary conditions and enforce global 
mass conservation for problems with constant coefficients.20'21 Furthermore, ELLAMs provide a 
framework to interpret other classes of FE-ELMS. In particular, for constant coefficients, ELLAMs 
revert, in the interior of the domain, to specific forms of either interpolation or integration FE-ELMs.~~ 

3. NUMERICAL FORMULATIONS 

Two alternative generic ELM formulations - Galerkin ELMs and ELLAMs -are presented and 
customized to obtain the specific FE-ELMS compared in this paper. 

3. I .  Generic formulations 

Gulerkin ELM formulation. The Lagrangian form of the trayport equation is discretized in time as 

where cc is the concentration at the feet of the characteristic lines and a E [0, 11. Standard application 
of a weak Galerkin weighted residual finite element formulation leads to 

with 

where r denotes local co-ordinates, m represents either time level 5 or n + 1 and 4j are weighting 
hc t ions  that coincide, on an elemental basis, with the shape functions. The boundary terms (BT) are 

where represents the boundaries. 
At this stage, choices need to be made regarding (a) the location of the heads of the characteristic 

lines, (b) the strategy for interpolation of concentrations and concentration derivatives at 5 and (c) the 
strategy for evaluation of integrals at time n. Most choices will lead to finite difference analogues of 
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r? I ,  

where Lj and Hi are the coefficients associated with the concentration at time n + 1 and node j + 1 and 
the concentration at time n and node j - K + i respectively. Pointers 11, 12,  r l  and r 2  specify the nodes 
involved in the contribution of the elements that contain node j to the weighted residual statement and 
K identifies the element that contains the foot of the characteristic line of node j .  

ELLAM formulation. In contrast with Galerkin FE-ELMS, ELLAMs retain the Eulerian form of the 
transport equation 

ac ac gC 
at ax a x 2  

L(c)=-+u-- -D-=O 

and resort to space-time weighting functions, leading to the weighted residual statement 

/I+' IQ wj(x, t )L(c)  drdt = 0. (13) 

Each weighting function wj is defined by setting the adjoint operator L* to zero in each element, i.e. 

where L* results naturally from the integration by parts of the original weighted residual statement 

L(c)wjdxdt = L*(w,)cdrdt + boundary terms. (15) J J 
Equation (14) has several solutions. To link the definition of the weighting function to the concept of 
characteristic lines (Figures 2(a)), we let 

X 

Figure 2. Comparison of weighting functions: (a) ELLAMs; (b) traditional ELMS 
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The weak form of equation (13) leads to 

k =  I 

with 

Assuming exact tracking of the characteristic lines, the double integral in equation (19a) vanishes 
owing to equation (1 6).  An a-method* is selected to approximate the time integration,20 then equation 
(1 7) can be rewritten as 

a)@&] + BT = 0, 
k =  1 

with 

Comparison of equations (8) and (20) shows that within the constraints (constant coefficients, non- 
reactive transport) of our analysis, except for the boundary elements, the two generic formulations- 
ELLAMs and Galerkin FE-ELMs-differ only in the definition of the weighting functions 4 and w. 
Since w is constant in time along the characteristic lines, it is enough to select the same weighting 
function in space for the methods to coincide.20 For instance, the chapeau function can be used for 
Galerkin FE-ELMS and the 'chapeau h c t i o n  along the characteristics' 21 for ELLAMs (Figure 2). 
Therefore the analysis in the remainder of this paper is equally applicable to ELLAMs and Galerkin 
FE-ELMS. 

3.2. Specific formulations 

Interpolation methods. In this class of FE-ELMS the nodes at time n + 1 are tracked backwards and 
the concentration and its derivative at the feet of the characteristic lines are obtained by interpolation 
with polynomial functions. The interpolated values are then assigned to elemental shape functions at 
n + 1 to define the initial conditions for the diffusion equation. 

As discussed by Baptists,* the polynomial functions used for interpolation at the feet of the 
characteristic lines may be compact (in the sense of being defined exclusively by the nodes of the 
element-'core' element-that contains the foot of the characteristic line, xl) or non-compact. We will 
select here a non-compact cubic interpolator (4P-LR2 in Baptista's notation) that relies on information 
from the nodes of a linear core element and its two adjacent neighbours. The 4P-LR2 leads to an 
accuracy similar to that of the much more common quadratic compact interpolate$' and has the 
advantage, for the purpose of the present paper, of having a linear rather than a quadratic core element. 

* For an alternative approach to the time integration, involving a second application of the chain rule to equation (18b), see 
Reference 2 1. 
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Linear core elements lead to time-independent amplification errors and to the dominance of 
amplification errors over phase errors, two properties shared by all integration methods discussed in 
later sections. 

The concentration at the feet of the characteristic lines for the 4P-LR2 is given by cubic polynomials 
defined by concentrations both at the nodes of the core element and at two adjacent nodes. The 
concentration after the interpolation step, for a generic position over the element, is defined by linear 
Lagrangian polynomials, i.e. 

where cf is the concentration at the foot of the characteristic line of node i ,  $i are the shape hnctions, /? 
is the Courant number and 0, are defined as 

1 
0, = --&3 +32 - r  - 31, 

with r E [-1, 11 in the core element. The finite difference analogue for the 4P-LR2 is presented in 
Table I. 

The interpolation methods can be applied either in a Galerkin FE-ELM or an ELLAM framework. In 
the first case the initial conditions for the diffusion step are defined over the element at time n + 1 
(equation (22)). For the ELLAM approach the concentration after advection does not need to be 
transported along the characteristic lines, since the weighting hnctions are unambiguously defined at 
time n (Figure 2). For constant coefficients wj(x, t n f l )  = 4 j ( x ) ,  hence interpolation Galerkin FE-ELMS 
coincide with interpolation ELLAMs. 

Piecewise integration methods. These methods are based on the exact evaluation of the integrals at 
the feet of the characteristic lines. In a Galerkin FE-ELM framework this is accomplished by following 
the backward tracking of the nodes (from n + 1 to n )  by a forward tracking (from n to n + I )  of the 
nodes and other notable points found between two consecutive feet of the characteristic lines’’ (Figure 
1 (c)). As a consequence, the initial conditions for the difision equation have discontinuities in the first 
derivative within each element. In order to evaluate the integrals exactly, either numerically or 
analytically, elements are split into regions where the first derivatives are continuous. 

In the original piecewise integration method, proposed by Yeh et al.,’’ the final concentration in an 
element is a piecewise function defined by the nodes and by the forward-tracked points (notable 
points). This technique is theoretically very attractive but may lead to very high computational costs, 
since the number of notable points necessary to define the concentration inside one element 
accumulates over time. 

We propose a simpler implementation of the piecewise integration concept @-ELM) which provides 
a cost per time step that is independent of the duration of the simulation. The concept of notable points 
is eliminated and the initial conditions for the difision equation are solely defined by the 
concentration at the backward and forward-tracked nodes (Figure l(c)). For constant velocity only one 
node is found between two consecutive feet of the characteristic lines, thus the concentration after 
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Table I. Finite difference analogues* 

pi-ELM 

~(cY?; +4c,"+' +cn+ ' ) -aD(cJT1 If1 -2c,"+I+cn+')  l+1 

1 
= ['-" (~ ( -2r3 - 6r2 + 6r - 2) + 3 2  + 6r + 3 

48 r + l  

l + u  3? 
+ 3 3  - 1 )  +-(-r3 + 3 r -  2) + - ( - 1  +3u) + 3 r ( l  + u )  

r - 1  2 

l + u  3rz 

+ [T (&(-2r3 + 6 2  - 6r + 2) + 32 - 6r + 3 ) +-D(1 l:" - a) ] c,"-mtp+l 

qu-ELM 

4P-LR2 

* u,  distance between nodej  and feet of characteristic lines in local co-ordinates (see Figure l(a)). 
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advection is defined as (in local co-ordinates) 

where tint and rint are respectively the concentration and location at time n + 1 of the forward-tracked 
node. The concentrations at the feet of the characteristic lines of the backward-tracked nodes, c1 and 
c2, are defined by linear polynomials. 

The concept of piecewise integration fits efficiently into an ELLAM framework. In this framework 
there is not even the need for forward tracking. Indeed, the backward tracking which defines the 
weighting functions (Figure 2) allows integrals to be evaluated directly at time n and identifies 
unambiguously any relevant discontinuities within the domain of integration. Therefore fewer 
characteristic lines need to be tracked and an ELLAM implementation of the piecewise integration may 
be less expensive than its Galerkin FE-ELM counterpart. For constant coefficients the piecewise 
integration concept applied to each framework4alerkin FE-ELM or ELLAM-leads to the same finite 
difference analogue (Table I). 

Quadrature integration methods. The quadrature methods (qu-ELMs) evaluate the integrals at the 
feet of the characteristic lines by numerical integrat i~n. '~~ '~ In a Galerkin FE-ELM fkamework, 
quadrature points rather than nodes are backward tracked from n + 1 to n. Once the concentration and 
its first derivative at the feet of the characteristic lines of the quadrature points are interpolated, the 
evaluation of the integrals at time n becomes tivial: 

where cf and dci/ar(' are respectively the concentration and its first derivative at the foot of the 
characteristic line for quadrature point i, ri and xi are respectively the location (at time n + 1) and the 
weight of point i, bti(ri) is the value of the weighting function at quadrature point i and nqp is the 
number of quadrature points. The finite difference analogue for a generic quadrature method is 
presented in Table I. 

We selected the two quadrature integration methods that integrate exactly the highest-order 
polynomials: Gauss and Lobatto quadrature. For a given number of quadrature points, n, Gauss 
quadrature integrates exactly polynomials of order 2n-1. While this order is lower for Lobatto 
quadrature (2n-3), this method includes the nodes as quadrature points and therefore can potentially 
lead to very different properties. The fact that the nodes are quadrature points has the additional 
advantage of reducing the tracking costs: in 1D only n-1 points per element need to be tracked. All the 
comparisons will therefore be performed between n Gauss points and n + 1 Lobatto points. In this way 
the two methods will be compared on an 'equal cost' as well as an 'equal order' basis. 

Numerical integration can also be used in the context of ELLAMs, but, unlike for interpolation and 
piecewise integration, there is no direct correlation between integration Galerkin FE-ELMS and 
ELLAMs, even for constant coefficients. Indeed, in ELLAMs the role of numerical integration is 
specifically restricted to the evaluation of integrals, since the weighting h c t i o n  is defined through the 
backward tracking of nodes (not quadrature points). Because the quadrature in ELLAMs does not 
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dictate the number of characteristic lines to be tracked, ELLAMs may be less expensive than 
quadrature integration FE-ELMS (which in 1D usually require the tracking of three or more quadrature 
points for satisfactory accuracy). 

4. STABILITY ANALYSIS 

The stability of interpolation ELMs (including the 4P-LR2) was investigated earlies and it was found 
that interpolation ELMs are unconditionally stable, except for cubic or higher-order compact 
interpolators and some Hermitian-Lagrangian interpolators. We therefore concentrate in this section 
on the stability of integration methods. 

The analysis is primarily based on amplification factors and truncation errors. Amplification factors 
are used to examine the influence of the Courant number (p) and dimensionless wavelength (L,/Ax), 
while truncation errors explain the influence of the diffision number (0). Targeted numerical 
experimentation, based on or influenced by the Convection-Diffusion illustrates some of the 
conclusions of the formal analysis. For additional numerical tests see Reference 3 1. 

The exact solution of the advection-diffision equation can be written as a summation of Fourier 
components: 

where i = ,/( - 1 ) , A :  are problem-related coefficients and L,  is the wavelength of the mth Fourier 
component. The error introduced by a numerical solution (Gffl) on the concentration of the mth 
component can be defined as 

Gm = 6 n / C m  = J G m J  exp(iV,), (27) 
where c, is the exact concentration, C, is the concentration given by the numerical algorithm, 1 G, I is 
the amplification factor and cp, is the phase error. 

The stability condition is 

IGfflI < exp(%), (28) 

A, = Znhx/L,. (29) 

where 

Since all methods considered in this paper have linear core elements, the propagation errors are 
time-independent.2 Therefore it is enough to analyse the amplification factors after a single time step. 
Contours of amplification factors for all selected ELMs (pure advection) are presented in Figures 3 and 
4, with p ranging from 0 to 1 and L,/hx from 2 to 34. The value of p was limited to a maximum of 
unity because the amplification factors per time step in ELMs with linear core elements depend only 
on the fractional part of p.*13* 

Figures 3 and 4 show that the pi-ELM is unconditionally stable (Figure 3) while the qu-ELM is 
unstable for some ranges of 8, for both Gauss and Lobatto quadratures. Figures 4(a)-4(c) show that 
different numbers and types of quadrature points lead to different patterns of conditional stability. 
Moreover, these figures suggest that the number of instability regions is related to the number of 
quadrature points. Indeed, each quadrature point (except when coinciding with a node) corresponds to 
a local maximum in a region of instability (Figure 5). 

The instability of the qu-ELM can be eliminated by introducing a small amount of diffision, which 
depends on both the type and number of quadrature points used. Since the maxima of the amplification 
factors decrease as the number of quadrature points increases (Figures 4 and 5), so will the amount of 
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Dimensionless Wavelength 
Figure 3. Amplification factor for pi-ELM and 4P-LR2 (pure advection) 

diffusion necessary to guarantee stability. The use of a specific type of quadrature will also determine 
the value of D required for stability. 

Truncation errors provide fiu-ther insight to the influence of diffusion on stability and to the 
relationship between the instability regions and the quadrature points. It is convenient to define the 
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Figure 4. Amplification factor for qu-ELM (pure advection): (a) three Gauss points; (b) six Gauss points; (c) four Lobatto points 
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Figure 5.  Comparison of amplification factors for qu-ELM with L,,,/Ax = 15: (a) Gauss quadrature points; (b) Lobatto 

quadrature points 

effective dzflision number (T) associated with the second derivative of concentration: 

where T is the numerical diffusion coefficient. A method will be stable for positive values of Y and 
unstable otherwise. For the qu-ELM with a generic quadrature and a generic number of points we 
obtain (see Reference 3 1  for further details) 

where u; is the distance between the left node and the foot of the characteristic line of point i in local 
co-ordinates [- 1 , 1 ] .  Ki, which identifies the element that contains the foot of the characteristic line of 
each quadrature point, is defined as 

Ki= { i n t@- ; - i )+ l  i f p - - - - > o ,  r; 1 

0 otherwise. 
2 2  

Contours of the effective difision number as a function of p and D are presented in Figures 6(a)- 
6(c) and confirm that the conditional stability of the qu-ELM can be eliminated by a very small amount 
of diffusion which depends on the number and type of quadrature points. The minimum diffusion 
number that leads to a positive effective diffusion was plotted against the number of quadrature points 
for both types of quadrature. Figure 7 shows that the minimum D decreases as the number of 
quadrature points increases for both types of quadrature points. The minimum diffusion numbers for n 
Gauss points and n + 1 Lobatto points are very similar. 

Regardless of the type and number of quadrature points, the amount of diffusion required to stabilize 
qu-ELM is considerably smaller than the dispersion coefficients used in many numerical simulations. 
As an example, consider a 2D depth-averaged simulation with a spatial discretization of 100 m and a 
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error--effective diffusion number for qu-ELM: (a) three Gauss points; (b) six Gauss points; (c) four Lobatto 
points 

time step of 1800 s (representative values for coastal systems). A diffusion number of 0.02 is selected, 
which is enough to stabilize the qu-ELM with three or more Gauss points and four or more Lobatto 
points. This corresponds to a diffusion coefficient of 0.1 1 m2 s-', which is well below the dispersion 
coefficients used in most depth-averaged simulations of surface water  system^.^^^ 

However, problems may arise in three-dimensional simulations, since the vertical diffusion is 
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Figure 7. Minimum diffusion number required to stabilize qu-ELM as a fimction of type and number of quadrature points 
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Figure 8. Comparison of effective difFusion numbers for alternative qu-ELM for D = 0 

considerably smaller than its horizontal counterparts. If we now consider a vertical discretization of 
10 m for the same time step and diffusion number, a diffusion coefficient of 1 . 1  x lop3 m2 s-l will 
result. Since the vertical diffusion coefficient is generally in the range 10-2-10-5 m2 s-' , the 
minimum D required for stability is of the order of magnitude of or larger than the processes being 
modelled. A larger number of quadrature points can reduce the necessary numerical diffusion but 
would lead to an increasing computational cost. Therefore the use of quadrature integration methods in 
3D may be restricted to particular cases. 

Figures 6(a)-6(c) also confirm that the number of quadrature points is related to the number of 
instability zones. In order to analyse this relationship in further detail, T was plotted against fi for 
D = 0 for both Gauss and Lobatto quadratures (Figure 8). Results show that the number of local 
minima in T is equal to the number of quadrature points and that the first derivative of T is continuous 
everywhere except at the local minima. Since an instability region must include a local minimum, a 
discontinuity in the first derivative also identifies apotentiully unstable region. Equations (3 1) and (32) 
show that these discontinuities are generated by unit steps in Ki when the foot of a characteristic line 
moves from one element to the next. A discontinuity will occur when Ki is increased by one for a 
Courant number given by (from (32)) 

(33) 
ri 

2 
= 0 =+ fi, = - + 0.5 + z  (z integer). 

Therefore a minimum in T will occur when the foot of the characteristic line of any quadrature point 
coincides with a node. 

Each type of quadrature will lead to a different relationship between the number of instability 
regions and the number of minima (and quadrature points), as suggested by the analysis of 
amplification factors. Lobatto points that coincide with nodes identify the integer Courant numbers 
only as minima, not as unstable zones (Figure 8). Since ELMS are exact for integer Courant numbers: 
the Lobatto quadrature will have nqp - 2 unstable zones. Since all Gauss points are located in the 
interior of elements, the number of instability regions for Gauss quadrature coincides with the number 
of minima and with the number of quadrature points (Figure 8). 
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In order to illustrate the properties previously established, two numerical tests were selected from the 
reference problems of the Convection-Diffusion In test 1 a Gauss hill is advected and 
diffused under a uniform flow. In test 2 the concentration field is imposed by a constant mass flux 
specified through the upstream concentration (advancing front). The parameters for all tests are 
presented in Table 11. Concentrations are shown in Figures 9 and 10. 

Results illustrate both the unconditional stability of the pi-ELM and the /?-dependent stability of the 
qu-ELM identified earlier. For a /I of 0.48 (Figure 9) the qu-ELM with three Gauss points is unstable 
while the qu-ELM with four Lobatto points presents a stable behaviour. A /I of 0.24 provides stable 
solutions for Gauss quadrature, but the use of Lobatto points leads to an unstable result (Figure 10). 
When sharp, poorly discretized concentration gradients are present (Figure lo), both integration ELMS 
exhibit artificial oscillations that are not present in the reference solution. These oscillations have larger 
amplitude for the pi-ELM that for the qu-ELM, but they lead to the qu-ELM'S instability when the 
fractional part of /I falls in one of the unstable zones identified in our formal analysis (Figure 10). In a 
more general case of variable coefficients the qu-ELM may or may not lead to instabilities, depending 
on the specific distribution of Courant numbers in the domain. 

The above results show that comparative study of methods can hardly be supported by numerical 
experimentation alone. The numerical experimentation can only simulate specific cases; therefore the 
global behaviour of methods with a strong dependence on one parameter cannot be well understood. 
Since the study of a method is traditionally based on a few tests only, an incorrect evaluation of the 
performance of the qu-ELM could result from an analysis based only on numerical experimentation. 

5 .  ACCURACY ANALYSIS 

The same tools used to investigate stability will now be used to characterize the accuracy of the 
selected interpolation and integration methods. While the simultaneous discussion of phase and 
amplification errors is in general recommended when studying accuracy, we concentrate here on the 
latter. This is appropriate because all methods of interest have rather small phase error,31 an expected 
consequence of their linear core elements.2 

All analysed interpolation and integration methods have rather good accuracy properties, as 

1.4 r 

C 
0 .- 
4- 

E 

8 
8 

c 
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-o'gdOO 6000 ' 7000 ' 8000 ' 9dOO 
distance 

Figure 9. Concentration profiles for test 1 
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Figure 10. Concentration profiles for test 2 

illustrated, for instance, by the relatively small number of dimensionless wavelengths required to bound 
the amplification error per time step to 1% (see Figures 3 and 4). 

The accuracy of all methods clearly improves with increasing diffusion number and dimensionless 
wavelength, but accuracy dependence on the Courant number is less obvious. Errors per time step are 
fairly independent (strictly independent for amplification errors) of the integer part of the Courant 
number.31 This a well-known characteristic of many ELMs2 and is responsible for the unusually good 
performance of these methods for Courant numbers well above unity (when tracking is forced to be 
very accurate). Errors per time step do depend strongly, though, on the fractional part of the Courant 
number. This dependence is relatively smooth for the interpolation and piecewise integration methods 
but is rather complex, though predictable, for the quadrature integration method (Figures 5(a), 5 @ )  and 
11). 

1.003 l . O o 4 T  0 I 

0.99%!0 . 0:2 ' 0.4 ' 0.6 0.8 1 .o 
Courant Number 

Figure 1 1. Comparison of amplification factors for L,/& = 15: pi-ELM, qu-ELM and 4P-LR2 
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Figures 12(a) and 12(b) show statistics of the amplification factors after 100 time steps over the 
Courant number, as a function of L,/Ax.  Our primary objective is to show that while mean 
amplification factors (Figure 12(a)) may allow a quick comparison of accuracy and stability properties, 
they can mask some rather undesirable features. For instance, mean amplification factors suggest that 
the use of three Gauss points leads to excellent accuracy, tainted by very mild instability. Accounting 
for the variability of amplification factors over fl, however, reveals very serious positive and negative 
diffusion and suggests that the method may frequently be unstable (Figure 12(b)). Furthermore, 

Dimensionless Wavelength 

!b) 

2.0 I I 

0 5 10 15 20 

Dimensionless Wavelength 

Figure 12. Comparison of amplification factor statistics after 100 time steps: (a) mean; @) range limited by mean plus standard 
deviation (full curves) and mean minus standard deviation (dotted curves) 
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methods with wide standard deviations will, in the general case of varying coefficient transport, tend to 
significant numerical aliasing and associated mass imbalances.* Desirable properties are therefore 
mean amplification factors close to unity and standard deviations close to zero. 

The accuracy of quadrature methods clearly increases with the number of quadrature points (Figure 
5). It is difficult to compare the accuracy of nqp Gauss points and nqp + 1 Lobatto points for specific 
values of Courant number, since their stable regions do not overlap for most of the b-range (Figures 8 
and 11). Their comparative performances for variable coefficient problems will depend on the specific 
distribution of over the domain. 

6 .  FINAL CONSIDERATIONS 

Our analysis has concentrated on the stability and accuracy of a set of integration ELMs that are 
replacing more conventional interpolation Eulerian-Lagrangian formulations in environmental 
modelling. The added accuracy that the new methods can provide over interpolation techniques is 
illustrated in Figure 13 and is quite attractive. However, very few applications using integration ELMs 
have been reported and in general were limited to synthetic problems??'' These methods still need to 
demonstrate that they can be applied effectively in multiple dimensions with unstructured grids, 
complex geometry and flows, and for problems involving multiple non-conservative tracers. The 
present paper does not directly address these issues but provides some basis for reflection. 

Non-compact interpolation methods such as the 4P-LR2 enhance the accuracy of compact 
interpolation methods (for the same order of the core element), as shown by Baptists.',* However, 
non-compact methods are cumbersome and arguably ambiguous to implement in multiple 
dimensions, except for simple grid patterns, and have not become the basis of any major finite 
element transport model. All other classes of methods analysed in this paper have the potential to 
lead to conceptually straightforward implementations in multiple dimensions. 
The piecewise integration method arguably fares the best among all analysed methods. Indeed, 
amplification errors are among the smallest and the least sensitive to the fractional part of the 
Courant number and the method is not tainted by the spectre of conditional stability. 
Implementations of the 'exact' integration concept for complex multidimensional flows may, 
however, raise three important questions: (i) possible additional cost relative to the interpolation 
methods, due to the forward-tracking step; (ii) possible inability to preserve mass, much like 
interpolation methods, due to non-conservative flow fields, inaccurate tracking or boundary 
conditions; (iii) expensive, albeit conceptually straightforward, evaluation of integrals. The first and 
arguably part of the second of these questions may be addressed effectively if the piecewise 
integration concept is treated as a particular case of ELLAMs, although the extension of ELLAMs 
to multiple dimensions may bring additional problems.22 
Quadrature integration methods have generally attractive accuracy properties, but their conditional 
stability prevents them from becoming a clearly preferred choice. Even if, arguably, many 
applications involve enough diffusion to stabilize the simulations, the strong dependence of 
accuracy on the fractional part of the Courant number is still to be regarded as a disadvantage and a 
likely source for aliasing and mass imbalances. In addition, quadrature methods required added 
tracking relative to interpolation methods. 

ELLAMs can be perceived as a general framework in which either interpolation or piecewise 
integration concepts can be implemented. The extension of these concepts to multiple dimensions and 

*For further details on the mechanism of generation of high-frequency noise see Reference 2. 
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Figure 13. 
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points) and 

complex flows appears quite straightforward. It is therefore tempting to recommend that the 
development of ELLAMs and piecewise integration Galerkin ELMs be pursued in parallel in the fbture 
Eulerian-Lagrangian models for multi dimensional applications. 
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